In vitro and in vivo interaction of macrophages from vaccinated and non-vaccinated channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri.
نویسندگان
چکیده
Macrophages from catfish vaccinated with an Edwardsiella ictaluri vaccine and macrophages from non-vaccinated catfish were used in in vitro and in vivo studies with red-fluorescent E. ictaluri to assess phagocytic ability, reactive oxygen and nitric oxide production and bactericidal activity. In the in vitro experiment, macrophages were harvested from vaccinated and non-vaccinated fish and then exposed to red-fluorescent E. ictaluri. Results of this study showed that E. ictaluri can survive and replicate in macrophages from non-vaccinated catfish (relative percent killing, RPK, from 0.011 to 0.620 and from -0.904 to 0.042 with macrophage:bacteria ratios of 1:20 and 1:100, respectively) even in the presence of reactive oxygen and nitrogen products. Macrophages from vaccinated fish were significantly (p < 0.05) more efficient in killing E. ictaluri (RPK from 0.656 to 0.978 and from 0.011 to 0.620 with macrophage:bacteria ratios of 1:20 and 1:100, respectively) and produced significantly (p < 0.05) higher amounts of ROS (10-fold increase) and nitrogen oxide (about 10-fold increase) than macrophages from non-vaccinated fish. In the in vivo experiment, vaccinated and non-vaccinated catfish were injected with red-fluorescent E. ictaluri to allow the interaction between macrophages and other components of the immune system. After 6h, macrophages were harvested from the fish and seeded in glass chamber slides and bactericidal activity was measured in vitro. Results showed in vivo interaction of other components of the immune system enhanced bactericidal activity of macrophages from vaccinated fish. In another set of experiments, catfish were intraperitoneally injected with fluorescent bacteria opsonized with immune serum or non-opsonized and necropsied in the first 48 h after bacterial challenge to observe localization of E. ictaluri between vaccinated and non-vaccinated catfish. Vaccinated fish were able to control the dispersion of E. ictaluri in the body and red-fluorescent bacteria were observed only in the spleen, anterior and trunk kidney. In non-vaccinated fish E. ictaluri was able to replicate and invade all organs with the exception of the brain. We further determined that macrophages seeded with E. ictaluri could cause infection in non-vaccinated fish upon reinoculation with in vitro infected-macrophages. Overall, the results indicated that macrophages from vaccinated fish are activated and responsible for rapid clearance of infection upon re-exposure to virulent E. ictaluri.
منابع مشابه
Development of a novobiocin-resistant Edwardsiella ictaluri as a novel vaccine in channel catfish (Ictalurus punctatus).
The efficacy of a novel attenuated Edwardsiella ictaluri vaccine (B-50348) was determined in channel catfish (Ictalurus punctatus) by bath immersion and intraperitoneal (IP) injection. The vaccine was developed from a virulent strain of E. ictaluri (AL93-58) through selection for novobiocin resistance. When channel catfish (average weight 10 g) were IP injected with 4.2 × 10⁶ colony-forming uni...
متن کاملPhagocytic and Bactericidal Properties of Channel Catfish Peritoneal Macrophages Exposed to Edwardsiella ictaluri Live Attenuated Vaccine and Wild-Type Strains
Edwardsiella ictaluri (E. ictaluri), a Gram-negative, intracellular, facultative bacterium, is the causative agent of enteric septicemia of catfish (ESC), which is one of the most significant diseases of farmed channel catfish. Macrophages have a critical role in major defense mechanisms against bacterial infections by migrating to the site of infection, engulfing and killing pathogens, and pri...
متن کاملEffects of cortisol and stress on channel catfish (Ictalurus punctatus) pathogen susceptibility and lysozyme activity following exposure to Edwardsiella ictaluri.
Periods of stress are often associated with disease outbreaks in cultured fish, and stress is often characterized by the secretion of cortisol. Although stress and cortisol secretion are highly correlated in fish, the role of cortisol in affecting channel catfish (Ictalurus punctatus) pathogen susceptibility is unclear. The effects of short-term stress and exogenous cortisol administration on c...
متن کاملEnhanced susceptibility of channel catfish to the bacterium Edwardsiella ictaluri after parasitism by Ichthyophthirius multifiliis.
Bacterium Edwardsiella ictaluri and parasite Ichthyophthirius multifiliis (Ich) are two common pathogens of cultured fish. The objective of this study was to evaluate the susceptibility of channel catfish Ictalurus punctatus to E. ictaluri and determine bacterial loads in different fish organs after parasitism by Ich. Fish received the following treatments: (1) infected by I. multifiliis at 500...
متن کاملInfluence of the Dietary Level of Iron from Iron Methionine and Iron Sulfate on Immune Response and Resistance of Channel Catfish to Edwardsiella ictaluri
Channel catfish Ictalurus punctatus fingerlings were fed purified diets supplemented with iron at levels of 0, 20, 60, and 180 mgkg from iron sulfate (FeS) or 5, 10, 20, 60, and 180 mgkg from iron methionine (FeM) in triplicate tanks for 8 wk. Fish were then divided into two groups and subjected to different assays to measure disease resistance and individual immune functions. Representative fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fish & shellfish immunology
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2009